Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Physiol Plant ; 176(1): e14192, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38351880

RESUMO

In plants, the contribution of the plasmotype (mitochondria and chloroplast) in controlling the circadian clock plasticity and possible consequences on cytonuclear genetic makeup have yet to be fully elucidated. A genome-wide association study in the wild barley (Hordeum vulgare ssp. spontaneum) B1K collection identified overlap with our previously mapped DRIVERS OF CLOCKS (DOCs) loci in wild-cultivated interspecific population. Moreover, we identified non-random segregation and epistatic interactions between nuclear DOCs loci and the chloroplastic RpoC1 gene, indicating an adaptive value for specific cytonuclear gene combinations. Furthermore, we show that DOC1.1, which harbours the candidate SIGMA FACTOR-B (SIG-B) gene, is linked with the differential expression of SIG-B and CCA1 genes and contributes to the circadian gating response to heat. High-resolution temporal growth and photosynthesis measurements of B1K also link the DOCs loci to differential growth, Chl content and quantum yield. To validate the involvement of the Plastid encoded polymerase (PEP) complex, we over-expressed the two barley chloroplastic RpoC1 alleles in Arabidopsis and identified significant differential plasticity under elevated temperatures. Finally, enhanced clock plasticity of de novo ENU (N-Ethyl-N-nitrosourea) -induced barley rpoB1 mutant further implicates the PEP complex as a key player in regulating the circadian clock output. Overall, this study highlights the contribution of specific cytonuclear interaction between rpoC1 (PEP gene) and SIG-B with distinct circadian timing regulation under heat, and their pleiotropic effects on growth implicate an adaptive value.


Assuntos
Relógios Circadianos , Hordeum , Hordeum/metabolismo , Estudo de Associação Genômica Ampla , Relógios Circadianos/genética , Fotossíntese/genética
2.
Nucleic Acids Res ; 51(13): 6593-6608, 2023 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-37326027

RESUMO

16S rRNA amplicon sequencing provides a relatively inexpensive culture-independent method for studying microbial communities. Although thousands of such studies have examined diverse habitats, it is difficult for researchers to use this vast trove of experiments when interpreting their own findings in a broader context. To bridge this gap, we introduce dbBact - a novel pan-microbiome resource. dbBact combines manually curated information from studies across diverse habitats, creating a collaborative central repository of 16S rRNA amplicon sequence variants (ASVs), which are assigned multiple ontology-based terms. To date dbBact contains information from more than 1000 studies, which include 1500000 associations between 360000 ASVs and 6500 ontology terms. Importantly, dbBact offers a set of computational tools allowing users to easily query their own datasets against the database. To demonstrate how dbBact augments standard microbiome analysis we selected 16 published papers, and reanalyzed their data via dbBact. We uncovered novel inter-host similarities, potential intra-host sources of bacteria, commonalities across different diseases and lower host-specificity in disease-associated bacteria. We also demonstrate the ability to detect environmental sources, reagent-borne contaminants, and identify potential cross-sample contaminations. These analyses demonstrate how combining information across multiple studies and over diverse habitats leads to better understanding of underlying biological processes.


Assuntos
Bases de Conhecimento , Microbiota , Bactérias/genética , DNA Bacteriano/genética , Microbiota/genética , RNA Ribossômico 16S/genética , Análise de Sequência de DNA/métodos
3.
Elife ; 122023 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-37144870

RESUMO

The mouse brain is by far the most intensively studied among mammalian brains, yet basic measures of its cytoarchitecture remain obscure. For example, quantifying cell numbers, and the interplay of sex, strain, and individual variability in cell density and volume is out of reach for many regions. The Allen Mouse Brain Connectivity project produces high-resolution full brain images of hundreds of brains. Although these were created for a different purpose, they reveal details of neuroanatomy and cytoarchitecture. Here, we used this population to systematically characterize cell density and volume for each anatomical unit in the mouse brain. We developed a DNN-based segmentation pipeline that uses the autofluorescence intensities of images to segment cell nuclei even within the densest regions, such as the dentate gyrus. We applied our pipeline to 507 brains of males and females from C57BL/6J and FVB.CD1 strains. Globally, we found that increased overall brain volume does not result in uniform expansion across all regions. Moreover, region-specific density changes are often negatively correlated with the volume of the region; therefore, cell count does not scale linearly with volume. Many regions, including layer 2/3 across several cortical areas, showed distinct lateral bias. We identified strain-specific or sex-specific differences. For example, males tended to have more cells in extended amygdala and hypothalamic regions (MEA, BST, BLA, BMA, and LPO, AHN) while females had more cells in the orbital cortex (ORB). Yet, inter-individual variability was always greater than the effect size of a single qualifier. We provide the results of this analysis as an accessible resource for the community.


Assuntos
Encéfalo , Neuroanatomia , Masculino , Feminino , Camundongos , Animais , Camundongos Endogâmicos C57BL , Encéfalo/anatomia & histologia , Tonsila do Cerebelo , Caracteres Sexuais , Mamíferos
4.
Anim Microbiome ; 4(1): 42, 2022 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-35729615

RESUMO

BACKGROUND: The welfare of farmed fish is influenced by numerous environmental and management factors. Fish skin is an important site for immunity and a major route by which infections are acquired. The objective of this study was to characterize bacterial composition variability on skin of healthy, diseased, and recovered Gilthead Seabream (Sparus aurata) and Barramundi (Lates calcarifer). S. aurata, which are highly sensitive to gram-negative bacteria, were challenged with Vibrio harveyi. In addition, and to provide a wider range of infections, both fish species (S. aurata and L. calcarifer) were infected with gram-positive Streptococcus iniae, to compare the response of the highly sensitive L. calcarifer to that of the more resistant S. aurata. All experiments also compared microbial communities found on skin of fish reared in UV (a general practice used in aquaculture) and non-UV treated water tanks. RESULTS: Skin swab samples were taken from different areas of the fish (lateral lines, abdomen and gills) prior to controlled infection, and 24, 48 and 72 h, 5 days, one week and one-month post-infection. Fish skin microbial communities were determined using Illumina iSeq100 16S rDNA for bacterial sequencing. The results showed that naturally present bacterial composition is similar on all sampled fish skin sites prior to infection, but the controlled infections (T1 24 h post infection) altered the bacterial communities found on fish skin. Moreover, when the naturally occurring skin microbiota did not quickly recover, fish mortality was common following T1 (24 h post infection). We further confirmed the differences in bacterial communities found on skin and in the water of fish reared in non-UV and UV treated water under healthy and diseased conditions. CONCLUSIONS: Our experimental findings shed light on the fish skin microbiota in relation to fish survival (in diseased and healthy conditions). The results can be harnessed to provide management tools for commercial fish farmers; predicting and preventing fish diseases can increase fish health, welfare, and enhance commercial fish yields.

5.
Acta Derm Venereol ; 101(11): adv00603, 2021 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-34515801

RESUMO

The bacterial community that colonizes the human face imparts physiochemical and physiological effects on the facial skin. These skin-microbe interactions impact dermatological, cosmetic and skincare applications due to the centrality of the human face in daily interactions. However, fine-scale characterization of the human face skin microbiome is lacking. Using 16S rRNA sequencing and 3D cartography, this study plotted and characterized the facial skin microbiome in high- definition, based on 1,649 samples from 12 individuals. Analysis yielded a number of novel insights, including that of the relative uniformity of skin microbiome composition within skin sites, site localization of certain microbes, and the interpersonal variability of the skin microbiome. The results show that high-resolution topographical mapping of the skin microbiome is a powerful tool for studying the human skin microbiome. Despite a decade of skin microbiome research, there is still much to be discovered.


Assuntos
Microbiota , Bactérias/genética , Face , Humanos , RNA Ribossômico 16S/genética , Pele
6.
Cell ; 184(13): 3394-3409.e20, 2021 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-34077752

RESUMO

The human fetal immune system begins to develop early during gestation; however, factors responsible for fetal immune-priming remain elusive. We explored potential exposure to microbial agents in utero and their contribution toward activation of memory T cells in fetal tissues. We profiled microbes across fetal organs using 16S rRNA gene sequencing and detected low but consistent microbial signal in fetal gut, skin, placenta, and lungs in the 2nd trimester of gestation. We identified several live bacterial strains including Staphylococcus and Lactobacillus in fetal tissues, which induced in vitro activation of memory T cells in fetal mesenteric lymph node, supporting the role of microbial exposure in fetal immune-priming. Finally, using SEM and RNA-ISH, we visualized discrete localization of bacteria-like structures and eubacterial-RNA within 14th weeks fetal gut lumen. These findings indicate selective presence of live microbes in fetal organs during the 2nd trimester of gestation and have broader implications toward the establishment of immune competency and priming before birth.


Assuntos
Bactérias/metabolismo , Desenvolvimento Embrionário , Feto/citologia , Feto/microbiologia , Leucócitos/citologia , Adulto , Bactérias/genética , Bactérias/ultraestrutura , Proliferação de Células , Células Dendríticas/metabolismo , Feminino , Feto/ultraestrutura , Trato Gastrointestinal/embriologia , Trato Gastrointestinal/ultraestrutura , Humanos , Memória Imunológica , Ativação Linfocitária/imunologia , Viabilidade Microbiana , Gravidez , Segundo Trimestre da Gravidez , RNA Bacteriano/genética , RNA Ribossômico 16S/genética , Reprodutibilidade dos Testes , Linfócitos T/citologia
7.
Nature ; 592(7852): 138-143, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33731925

RESUMO

A variety of species of bacteria are known to colonize human tumours1-11, proliferate within them and modulate immune function, which ultimately affects the survival of patients with cancer and their responses to treatment12-14. However, it is not known whether antigens derived from intracellular bacteria are presented by the human leukocyte antigen class I and II (HLA-I and HLA-II, respectively) molecules of tumour cells, or whether such antigens elicit a tumour-infiltrating T cell immune response. Here we used 16S rRNA gene sequencing and HLA peptidomics to identify a peptide repertoire derived from intracellular bacteria that was presented on HLA-I and HLA-II molecules in melanoma tumours. Our analysis of 17 melanoma metastases (derived from 9 patients) revealed 248 and 35 unique HLA-I and HLA-II peptides, respectively, that were derived from 41 species of bacteria. We identified recurrent bacterial peptides in tumours from different patients, as well as in different tumours from the same patient. Our study reveals that peptides derived from intracellular bacteria can be presented by tumour cells and elicit immune reactivity, and thus provides insight into a mechanism by which bacteria influence activation of the immune system and responses to therapy.


Assuntos
Antígenos de Bactérias/análise , Antígenos de Bactérias/imunologia , Bactérias/imunologia , Antígenos HLA/imunologia , Melanoma/imunologia , Melanoma/microbiologia , Peptídeos/análise , Peptídeos/imunologia , Apresentação de Antígeno , Bactérias/classificação , Bactérias/genética , Linhagem Celular Tumoral , Técnicas de Cocultura , Antígenos HLA/análise , Humanos , Linfócitos do Interstício Tumoral/citologia , Linfócitos do Interstício Tumoral/imunologia , Melanoma/patologia , Metástase Neoplásica/imunologia , Filogenia , RNA Ribossômico 16S/genética
8.
Oncoimmunology ; 9(1): 1800957, 2020 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-32934891

RESUMO

Many characteristics of cancer such as proliferation, survival, progression, immunogenicity, sensitivity, and resistance to therapy are not just endogenously driven by the tumor cells themselves, but are greatly affected by their interaction with the components of their microenvironment. In our recent report, we comprehensively characterized the bacterial content of solid tumors, which is strongly related to tumor type and subtype, largely presenting as metabolically-active and intra-cellular. Our integration with clinical patient data indicates potential avenues of cross-talk between the tumors and their bacterial counterparts paving the way for a deeper understanding of the physiological/biological context of the tumor and how to harness bacteria in therapy settings.


Assuntos
Microbiota , Neoplasias , Bactérias/genética , Humanos , Microambiente Tumoral
9.
Sci Adv ; 6(37)2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32917716

RESUMO

Recent reports suggest that 10 to 30% of severe acute respiratory syndrome coronavirus 2 (SARS- CoV-2) infected patients are asymptomatic and that viral shedding may occur before symptom onset. Therefore, there is an urgent need to increase diagnostic testing capabilities to prevent disease spread. We developed P-BEST, a method for Pooling-Based Efficient SARS-CoV-2 Testing, which identifies all positive subjects within a set of samples using a single round of testing. Each sample is assigned into multiple pools using a combinatorial pooling strategy based on compressed sensing. We pooled sets of 384 samples into 48 pools, providing both an eightfold increase in testing efficiency and an eightfold reduction in test costs, while identifying up to five positive carriers. We then used P-BEST to screen 1115 health care workers using 144 tests. P- BEST provides an efficient and easy-to-implement solution for increasing testing capacity that can be easily integrated into diagnostic laboratories.


Assuntos
Infecções Assintomáticas , Portador Sadio/diagnóstico , Técnicas de Laboratório Clínico/métodos , Infecções por Coronavirus/diagnóstico , Pneumonia Viral/diagnóstico , Betacoronavirus/isolamento & purificação , COVID-19 , Teste para COVID-19 , Portador Sadio/virologia , Humanos , Pandemias , SARS-CoV-2 , Eliminação de Partículas Virais
11.
Photochem Photobiol ; 95(6): 1446-1453, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31074874

RESUMO

Dead Sea climatotherapy (DSC) is a well-established therapeutic modality for the treatment of several diseases, including atopic dermatitis. Skin microbiome studies have shown that skin microbiome diversity is anticorrelated with both atopic dermatitis severity and concurrent Staphylococcus aureus overgrowth. This study aimed to determine whether DSC induces skin microbiome changes concurrent with clinical improvements in atopic dermatitis. We sampled 35 atopic dermatitis patients and ten healthy controls on both the antecubital and popliteal fossa. High-resolution microbial community profiling was attained by sequencing multiple regions of the 16S rRNA gene. Dysbiosis was observed in both lesional and nonlesional sites, which was partially attenuated following treatment. Severe AD skin underwent the most significant community shifts, and Staphylococcus epidermidis, Streptococcus mitis and Micrococcus luteus relative abundance were significantly affected by Dead Sea climatotherapy. Our study highlights the temporal shifts of the AD skin microbiome induced by Dead Sea climatotherapy and offers potential explanations for the success of climatotherapy on a variety of skin diseases, including AD.


Assuntos
Bactérias/classificação , Climatoterapia , Dermatite Atópica/microbiologia , Dermatite Atópica/terapia , Microbiota/fisiologia , Pele/microbiologia , Adolescente , Adulto , Criança , Pré-Escolar , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
12.
Microbiome ; 6(1): 17, 2018 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-29373999

RESUMO

BACKGROUND: Most of our knowledge about the remarkable microbial diversity on Earth comes from sequencing the 16S rRNA gene. The use of next-generation sequencing methods has increased sample number and sequencing depth, but the read length of the most widely used sequencing platforms today is quite short, requiring the researcher to choose a subset of the gene to sequence (typically 16-33% of the total length). Thus, many bacteria may share the same amplified region, and the resolution of profiling is inherently limited. Platforms that offer ultra-long read lengths, whole genome shotgun sequencing approaches, and computational frameworks formerly suggested by us and by others all allow different ways to circumvent this problem yet suffer various shortcomings. There is a need for a simple and low-cost 16S rRNA gene-based profiling approach that harnesses the short read length to provide a much larger coverage of the gene to allow for high resolution, even in harsh conditions of low bacterial biomass and fragmented DNA. RESULTS: This manuscript suggests Short MUltiple Regions Framework (SMURF), a method to combine sequencing results from different PCR-amplified regions to provide one coherent profiling. The de facto amplicon length is the total length of all amplified regions, thus providing much higher resolution compared to current techniques. Computationally, the method solves a convex optimization problem that allows extremely fast reconstruction and requires only moderate memory. We demonstrate the increase in resolution by in silico simulations and by profiling two mock mixtures and real-world biological samples. Reanalyzing a mock mixture from the Human Microbiome Project achieved about twofold improvement in resolution when combing two independent regions. Using a custom set of six primer pairs spanning about 1200 bp (80%) of the 16S rRNA gene, we were able to achieve ~ 100-fold improvement in resolution compared to a single region, over a mock mixture of common human gut bacterial isolates. Finally, the profiling of a Drosophila melanogaster microbiome using the set of six primer pairs provided a ~ 100-fold increase in resolution and thus enabling efficient downstream analysis. CONCLUSIONS: SMURF enables the identification of near full-length 16S rRNA gene sequences in microbial communities, having resolution superior compared to current techniques. It may be applied to standard sample preparation protocols with very little modifications. SMURF also paves the way to high-resolution profiling of low-biomass and fragmented DNA, e.g., in the case of formalin-fixed and paraffin-embedded samples, fossil-derived DNA, or DNA exposed to other degrading conditions. The approach is not restricted to combining amplicons of the 16S rRNA gene and may be applied to any set of amplicons, e.g., in multilocus sequence typing (MLST).


Assuntos
Drosophila melanogaster/microbiologia , Reação em Cadeia da Polimerase/métodos , RNA Ribossômico 16S/genética , Análise de Sequência de DNA/métodos , Algoritmos , Animais , Bactérias/classificação , Simulação por Computador , Sondas de DNA/genética , DNA Bacteriano/genética , Microbiota , Filogenia
13.
Acta Derm Venereol ; 98(2): 256-261, 2018 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-28815268

RESUMO

Dead Sea climatotherapy (DSC) is a therapeutic modality for a variety of chronic skin conditions, yet there has been scarce research on the relationship between the cutaneous microbiota and disease states in response to DSC. We characterized the skin bacterial and fungal microbiome of healthy volunteers who underwent DSC. Bacterial community diversity remained similar before and after treatment, while fungal diversity was significantly reduced as a result of the treatment. Individuals showed greater inter-individual than temporal bacterial community variance, yet the opposite was true for fungal community composition. We further identified Malassezia as the genus driving temporal mycobiome variations. The results indicate that the microbiome remains stable throughout DSC, while the mycobiome undergoes dramatic community changes. The results of this study will serve as an important baseline for future investigations of microbiome and mycobiome temporal phenomena in diseased states.


Assuntos
Bactérias/crescimento & desenvolvimento , Balneologia/métodos , Climatoterapia/métodos , Fungos/crescimento & desenvolvimento , Helioterapia/métodos , Microbiota , Pele/microbiologia , Bactérias/classificação , Feminino , Fungos/classificação , Voluntários Saudáveis , Humanos , Israel , Malassezia/crescimento & desenvolvimento , Masculino , Micobioma , Fatores de Tempo
14.
Science ; 357(6356): 1156-1160, 2017 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-28912244

RESUMO

Growing evidence suggests that microbes can influence the efficacy of cancer therapies. By studying colon cancer models, we found that bacteria can metabolize the chemotherapeutic drug gemcitabine (2',2'-difluorodeoxycytidine) into its inactive form, 2',2'-difluorodeoxyuridine. Metabolism was dependent on the expression of a long isoform of the bacterial enzyme cytidine deaminase (CDDL), seen primarily in Gammaproteobacteria. In a colon cancer mouse model, gemcitabine resistance was induced by intratumor Gammaproteobacteria, dependent on bacterial CDDL expression, and abrogated by cotreatment with the antibiotic ciprofloxacin. Gemcitabine is commonly used to treat pancreatic ductal adenocarcinoma (PDAC), and we hypothesized that intratumor bacteria might contribute to drug resistance of these tumors. Consistent with this possibility, we found that of the 113 human PDACs that were tested, 86 (76%) were positive for bacteria, mainly Gammaproteobacteria.


Assuntos
Antimetabólitos Antineoplásicos/uso terapêutico , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/microbiologia , Desoxicitidina/análogos & derivados , Resistencia a Medicamentos Antineoplásicos , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/microbiologia , Animais , Neoplasias do Colo/microbiologia , Desoxicitidina/uso terapêutico , Gammaproteobacteria/isolamento & purificação , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Mycoplasma hyorhinis/isolamento & purificação , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/microbiologia , Gencitabina , Neoplasias Pancreáticas
15.
Nat Commun ; 8: 15414, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28569746

RESUMO

Communication provides the basis for social life. In ant colonies, the prevalence of local, often chemically mediated, interactions introduces strong links between communication networks and the spatial distribution of ants. It is, however, unknown how ants identify and maintain nest chambers with distinct functions. Here, we combine individual tracking, chemical analysis and machine learning to decipher the chemical signatures present on multiple nest surfaces. We present evidence for several distinct chemical 'road-signs' that guide the ants' movements within the dark nest. These chemical signatures can be used to classify nest chambers with different functional roles. Using behavioural manipulations, we demonstrate that at least three of these chemical signatures are functionally meaningful and allow ants from different task groups to identify their specific nest destinations, thus facilitating colony coordination and stabilization. The use of multiple chemicals that assist spatiotemporal guidance, segregation and pattern formation is abundant in multi-cellular organisms. Here, we provide a rare example for the use of these principles in the ant colony.


Assuntos
Formigas/fisiologia , Comportamento Animal/fisiologia , Feromônios/metabolismo , Comportamento Social , Percepção Espacial/fisiologia , Animais , Comportamento de Nidação
16.
Plant J ; 86(4): 349-59, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26959378

RESUMO

Screening large populations for carriers of known or de novo rare single nucleotide polymorphisms (SNPs) is required both in Targeting induced local lesions in genomes (TILLING) experiments in plants and in screening of human populations. We previously suggested an approach that combines the mathematical field of compressed sensing with next-generation sequencing to allow such large-scale screening. Based on pooled measurements, this method identifies multiple carriers of heterozygous or homozygous rare alleles while using only a small fraction of resources. Its rigorous mathematical foundations allow scalable and robust detection, and provide error correction and resilience to experimental noise. Here we present a large-scale experimental demonstration of our computational approach, in which we targeted a TILLING population of 1024 Sorghum bicolor lines to detect carriers of de novo SNPs whose frequency was less than 0.1%, using only 48 pools. Subsequent validation confirmed that all detected lines were indeed carriers of the predicted mutations. This novel approach provides a highly cost-effective and robust tool for biologists and breeders to allow identification of novel alleles and subsequent functional analysis.


Assuntos
Genoma de Planta , Polimorfismo de Nucleotídeo Único , Sorghum/genética , Alelos , Biologia Computacional/métodos , Genes de Plantas , Heterozigoto
17.
Immunology ; 146(3): 401-10, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26227667

RESUMO

In the course of investigating anti-DNA autoantibodies, we examined IgM and IgG antibodies to poly-G and other oligonucleotides in the sera of healthy persons and those diagnosed with systemic lupus erythematosus (SLE), scleroderma (SSc), or pemphigus vulgaris (PV); we used an antigen microarray and informatic analysis. We now report that all of the 135 humans studied, irrespective of health or autoimmune disease, manifested relatively high amounts of IgG antibodies binding to the 20-mer G oligonucleotide (G20); no participants entirely lacked this reactivity. IgG antibodies to homo-nucleotides A20, C20 or T20 were present only in the sera of SLE patients who were positive for antibodies to dsDNA. The prevalence of anti-G20 antibodies led us to survey human, mouse and Drosophila melanogaster (fruit fly) genomes for runs of T20 and G20 or more: runs of T20 appear > 170,000 times compared with only 93 runs of G20 or more in the human genome; of these runs, 40 were close to brain-associated genes. Mouse and fruit fly genomes showed significantly lower T20/G20 ratios than did human genomes. Moreover, sera from both healthy and SLE mice contained relatively little or no anti-G20 antibodies; so natural anti-G20 antibodies appear to be characteristic of humans. These unexpected observations invite investigation of the immune functions of anti-G20 antibodies in human health and disease and of runs of G20 in the human genome.


Assuntos
Autoanticorpos/sangue , Autoantígenos/genética , Autoantígenos/imunologia , Poli G/genética , Poli G/imunologia , Animais , Anticorpos Antinucleares/sangue , Estudos de Casos e Controles , Ilhas de CpG , Drosophila melanogaster/genética , Feminino , Genoma Humano , Genoma de Inseto , Humanos , Imunidade Inata , Imunoglobulina G/sangue , Imunoglobulina M/sangue , Lúpus Eritematoso Sistêmico/genética , Lúpus Eritematoso Sistêmico/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos NZB , Pênfigo/genética , Pênfigo/imunologia , Poli T/genética , Poli T/imunologia , Escleroderma Sistêmico/genética , Escleroderma Sistêmico/imunologia , Especificidade da Espécie
18.
Immunology ; 143(3): 374-80, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24820664

RESUMO

Pemphigus vulgaris (PV) is an autoimmune skin disease, which has been characterized by IgG autoantibodies to desmoglein 3. Here we studied the antibody signatures of PV patients compared with healthy subjects and with patients with two other autoimmune diseases with skin manifestations (systemic lupus erythematosus and scleroderma), using an antigen microarray and informatics analysis. We now report a previously unobserved phenomenon--patients with PV, compared with the healthy subjects and the two other diseases, show a significant decrease in IgG autoantibodies to a specific set of self-antigens. This novel finding demonstrates that an autoimmune disease may be associated with a loss of specific, healthy IgG autoantibodies and not only with a gain of specific, pathogenic IgG autoantibodies.


Assuntos
Autoantígenos/imunologia , Desmogleína 3/imunologia , Imunoglobulina G/imunologia , Pênfigo/imunologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Especificidade de Anticorpos/imunologia , Autoanticorpos/sangue , Autoanticorpos/imunologia , Estudos de Casos e Controles , Feminino , Humanos , Imunoglobulina G/sangue , Lúpus Eritematoso Sistêmico/imunologia , Masculino , Pessoa de Meia-Idade , Escleroderma Sistêmico/imunologia
19.
Front Genet ; 5: 27, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24611070

RESUMO

Commensal gut bacteria in many species including flies are integral part of their host, and are known to influence its development and homeostasis within generation. Here we report an unexpected impact of host-microbe interactions, which mediates multi-generational, non-Mendelian inheritance of a stress-induced phenotype. We have previously shown that exposure of fly larvae to G418 antibiotic induces transgenerationally heritable phenotypes, including a delay in larval development, gene induction in the gut and morphological changes. We now show that G418 selectively depletes commensal Acetobacter species and that this depletion explains the heritable delay, but not the inheritance of the other phenotypes. Notably, the inheritance of the delay was mediated by a surprising trans-generational effect. Specifically, bacterial removal from F1 embryos did not induce significant delay in F1 larvae, but nonetheless led to a considerable delay in F2. This effect maintains a delay induced by bacterial-independent G418 toxicity to the host. In line with these findings, reintroduction of isolated Acetobacter species prevented the inheritance of the delay. We further show that this prevention is partly mediated by vitamin B2 (Riboflavin) produced by these bacteria; exogenous Riboflavin led to partial prevention and inhibition of Riboflavin synthesis compromised the ability of the bacteria to prevent the inheritance. These results identify host-microbe interactions as a hitherto unrecognized factor capable of mediating non-Mendelian inheritance of a stress-induced phenotype.

20.
Immunology ; 141(2): 276-85, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24164500

RESUMO

Systemic lupus erythematosus (SLE) is an autoimmune disease that can attack many different body organs; the triggering event is unknown. SLE has been associated with more than 100 different autoantibody reactivities - anti-dsDNA is prominent. Nevertheless, autoantibodies to dsDNA occur in only two-thirds of SLE patients. We previously reported the use of an antigen microarray to characterize SLE serology. We now report the results of an expanded study of serology in SLE patients and scleroderma (SSc) patients compared with healthy controls. The analysis validated and extended previous findings: two-thirds of SLE patients reacted to a large spectrum of self-molecules that overlapped with their reactivity to dsDNA; moreover, some SLE patients manifested a deficiency of natural IgM autoantibodies. Most significant was the finding that many SLE patients who were negative for autoantibodies to dsDNA manifested abnormal antibody responses to Epstein-Barr virus (EBV): these subjects made IgG antibodies to EBV antigens to which healthy subjects did not respond or they failed to make antibodies to EBV antigens to which healthy subjects did respond. This observation suggests that SLE may be associated with a defective immune response to EBV. The SSc patients shared many of these serological abnormalities with SLE patients, but differed from them in increased IgG autoantibodies to topoisomerase and centromere B; 84% of SLE patients and 58% of SSc patients could be detected by their abnormal antibodies to EBV. Hence an aberrant immune response to a ubiquitous viral infection such as EBV might set the stage for an autoimmune disease.


Assuntos
Anticorpos Antinucleares/sangue , Anticorpos Antivirais/sangue , Herpesvirus Humano 4/imunologia , Lúpus Eritematoso Sistêmico/imunologia , Escleroderma Sistêmico/imunologia , Humanos , Imunoglobulina G/sangue , Imunoglobulina M/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...